| Test Code | Year | Form |
| :---: | :---: | :---: |
| 1041 | 23 | 4 |
| Last Revision Date:08/02/2023 |  |  |

## 2023 STAAR Released Blueprint <br> Grade 4 Mathematics Spring, 2023-2024

| SE Descriptions | Reporting Category | TEKS/SE | R or S | No. of Items | \% of Test |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1. Number and operations. The student applies mathematical process standards to represent, compare, and order whole numbers and decimals and understand relationships related to place value. The student is expected to interpret the value of each place-value position as 10 times the position to the right and as one-tenth of the value of the place to its left. | 1 | 4.2A | S | 1 | 3\% |
| 2. Number and operations. The student applies mathematical process standards to represent, compare, and order whole numbers and decimals and understand relationships related to place value. The student is expected to represent the value of the digit in whole numbers through $1,000,000,000$ and decimals to the hundredths using expanded notation and numerals. | 1 | 4.2B | R | 2 | 6\% |
| 3. Number and operations. The student applies mathematical process standards to represent, compare, and order whole numbers and decimals and understand relationships related to place value. The student is expected to relate decimals to fractions that name tenths and hundredths. | 1 | 4.2G | R | 2 | 6\% |
| 4. Number and operations. The student applies mathematical process standards to represent and generate fractions to solve problems. The student is expected to decompose a fraction in more than one way into a sum of fractions with the same denominator using concrete and pictorial models and recording results with symbolic representations. | 1 | 4.3B | S | 1 | 3\% |
| 5. Number and operations. The student applies mathematical process standards to represent and generate fractions to solve problems. The student is expected to compare two fractions with different numerators and different denominators and represent the comparison using the symbols $>,=$, or $<$. | 1 | 4.3D | R | 2 | 6\% |
| 6. Number and operations. The student applies mathematical process standards to represent and generate fractions to solve problems. The student is expected to represent and solve addition and subtraction of fractions with equal denominators using objects and pictorial models that build to the number line and properties of operations. | 2 | 4.3E | R | 1 | 3\% |


| SE Descriptions | Reporting Category | TEKS/SE | R or S | No. of Items | \% of <br> Test |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 7. Number and operations. The student applies mathematical process standards to represent and generate fractions to solve problems. The student is expected to evaluate the reasonableness of sums and differences of fractions using benchmark fractions $0,1 / 4$, $1 / 2,3 / 4$, and 1 , referring to the same whole. | 2 | 4.3F | S | 1 | 3\% |
| 8. Number and operations. The student applies mathematical process standards to develop and use strategies and methods for whole number computations and decimal sums and differences in order to solve problems with efficiency and accuracy. The student is expected to add and subtract whole numbers and decimals to the hundredths place using the standard algorithm. | 2 | 4.4A | R | 1 | 3\% |
| 9. Number and operations. The student applies mathematical process standards to develop and use strategies and methods for whole number computations and decimal sums and differences in order to solve problems with efficiency and accuracy. The student is expected to represent the product of 2 two-digit numbers using arrays, area models, or equations, including perfect squares through 15 by 15. | 2 | 4.4C | S | 1 | 3\% |
| 10. Number and operations. The student applies mathematical process standards to develop and use strategies and methods for whole number computations and decimal sums and differences in order to solve problems with efficiency and accuracy. The student is expected to use strategies and algorithms, including the standard algorithm, to multiply up to a four-digit number by a one-digit number and to multiply a two-digit number by a twodigit number. Strategies may include mental math, partial products, and the commutative, associative, and distributive properties. | 2 | 4.4D | S | 1 | 3\% |
| 11. Number and operations. The student applies mathematical process standards to develop and use strategies and methods for whole number computations and decimal sums and differences in order to solve problems with efficiency and accuracy. The student is expected to represent the quotient of up to a four-digit whole number divided by a onedigit whole number using arrays, area models, or equations. | 2 | 4.4E | S | 1 | 3\% |
| 12. Number and operations. The student applies mathematical process standards to develop and use strategies and methods for whole number computations and decimal sums and differences in order to solve problems with efficiency and accuracy. The student is expected to use strategies and algorithms, including the standard algorithm, to divide up to a four-digit dividend by a one-digit divisor. | 2 | 4.4F | S | 1 | 3\% |
| 13. Number and operations. The student applies mathematical process standards to develop and use strategies and methods for whole number computations and decimal sums and differences in order to solve problems with efficiency and accuracy. The student is expected to solve with fluency one- and two-step problems involving multiplication and division, including interpreting remainders. | 2 | 4.4H | R | 1 | 3\% |


| SE Descriptions | Reporting Category | TEKS/SE | R or S | No. of Items | \% of Test |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 14. Algebraic reasoning. The student applies mathematical process standards to develop concepts of expressions and equations. The student is expected to represent multi-step problems involving the four operations with whole numbers using strip diagrams and equations with a letter standing for the unknown quantity. | 2 | 4.5A | R | 2 | 6\% |
| 15. Algebraic reasoning. The student applies mathematical process standards to develop concepts of expressions and equations. The student is expected to represent problems using an input-output table and numerical expressions to generate a number pattern that follows a given rule representing the relationship of the values in the resulting sequence and their position in the sequence. | 2 | 4.5B | R | 1 | 3\% |
| 16. Algebraic reasoning. The student applies mathematical process standards to develop concepts of expressions and equations. The student is expected to solve problems related to perimeter and area of rectangles where dimensions are whole numbers. | 3 | 4.5D | R | 2 | 6\% |
| 17. Geometry and measurement. The student applies mathematical process standards to analyze geometric attributes in order to develop generalizations about their properties. The student is expected to identify and draw one or more lines of symmetry, if they exist, for a two-dimensional figure. | 3 | 4.6B | S | 1 | 3\% |
| 18. Geometry and measurement. The student applies mathematical process standards to analyze geometric attributes in order to develop generalizations about their properties. The student is expected to apply knowledge of right angles to identify acute, right, and obtuse triangles. | 3 | 4.6C | S | 1 | 3\% |
| 19. Geometry and measurement. The student applies mathematical process standards to analyze geometric attributes in order to develop generalizations about their properties. The student is expected to classify two-dimensional figures based on the presence or absence of parallel or perpendicular lines or the presence or absence of angles of a specified size. | 3 | 4.6D | R | 1 | 3\% |
| 20. Geometry and measurement. The student applies mathematical process standards to solve problems involving angles less than or equal to 180 degrees. The student is expected to determine the approximate measures of angles in degrees to the nearest whole number using a protractor. | 3 | 4.7C | R | 1 | 3\% |
| 21. Geometry and measurement. The student applies mathematical process standards to select appropriate customary and metric units, strategies, and tools to solve problems involving measurement. The student is expected to identify relative sizes of measurement units within the customary and metric systems. | 3 | 4.8A | S | 1 | 3\% |


| SE Descriptions |  |  | Reporting Category | TEKS/SE | R or S | No. of Items | \% of Test |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 22. Geometry and measurement. The student applies mathematical process standards to select appropriate customary and metric units, strategies, and tools to solve problems involving measurement. The student is expected to solve problems that deal with measurements of length, intervals of time, liquid volumes, mass, and money using addition, subtraction, multiplication, or division as appropriate. |  |  | 3 | 4.8C | R | 2 | 6\% |
| 23. Data analysis. The student applies mathematical process standards to solve problems by collecting, organizing, displaying, and interpreting data. The student is expected to represent data on a frequency table, dot plot, or stem-and-leaf plot marked with whole numbers and fractions. |  |  | 4 | 4.9A | R | 2 | 6\% |
| 24. Personal financial literacy. The student applies mathematical process standards to manage one's financial resources effectively for lifetime financial security. The student is expected to distinguish between fixed and variable expenses. |  |  | 4 | 4.10A | S | 1 | 3\% |
| 25. Personal financial literacy. The student applies mathematical process standards to manage one's financial resources effectively for lifetime financial security. The student is expected to describe the basic purpose of financial institutions, including keeping money safe, borrowing money, and lending. |  |  | 4 | 4.10E | S | 1 | 3\% |
| Item Types by Point | 1-point questions (MC \& TE Items) | 24 | Total |  | R | 20 | 63\% |
|  | 2-point questions (TE Items) | 8 |  |  | S | 12 | 38\% |
|  | Total | 40 |  |  | All | 32 | 100\% |

Note: $\boldsymbol{R}=$ Readiness Standard, $\mathbf{S}=$ Supporting Standard. Percentages are rounded to the nearest whole number.
Reporting Categories: 1. Numerical Representations and Relationships
2. Computations and Algebraic Relationships
3. Geometry and Measurement
4. Data Analysis and Personal Finance

